Learning rules for neuro-controller via simultaneous perturbation

نویسندگان

  • Yutaka Maeda
  • Rui J. P. de Figueiredo
چکیده

This paper describes learning rules using simultaneous perturbation for a neurocontroller that controls an unknown plant. When we apply a direct control scheme by a neural network, the neural network must learn an inverse system of the unknown plant. In this case, we must know the sensitivity function of the plant using a kind of the gradient method as a learning rule of the neural network. On the other hand, the learning rules described here do not require information about the sensitivity function. Some numerical simulations of a two-link planar arm and a tracking problem for a nonlinear dynamic plant are shown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time control and learning using neuro-controller via simultaneous perturbation for flexible arm system (I)

This paper describes details of real-time control and real-time learning of neuro-controller for a flexible arm system using the simultaneous perturbation optimization method. The simultaneous perturbation optimization method is useful, especially when dimension of the parameters to be adjusted is large. Therefore, it is beneficial to utilize the simultaneous perturbation method for neural netw...

متن کامل

Neuro-Controller with Simultaneous Perturbation for Robot Arm - Learning of Kinematics and Dynamics without Jacobian

We report two control schemes for a two-link robot arm system using a neuro-controller. We adopted the simultaneous perturbation learning rule for a neuro-controller. Ordinary gradient type of learning rule uses Jacobian of the objective system in a direct control scheme by a neural network. However, the learning rule proposed here requires only two values of an error function. Without Jacobian...

متن کامل

Simultaneous perturbation for single hidden layer networks -- cascade learning

A simultaneous perturbation approach for cascade learning of single hidden layer neural network is presented. A sigmoidal hidden neuron is added to the single layer of hidden neurons after training until the error has stopped decreasing after a certain limit. Then, the cascaded network is again trained using simultaneous perturbation. Perturbation employed on the weights connecting to hidden ne...

متن کامل

A Controller Design with ANFIS Architecture Attendant Learning Ability for SSSC-Based Damping Controller Applied in Single Machine Infinite Bus System

Static Synchronous Series Compensator (SSSC) is a series compensating Flexible AC Transmission System (FACTS) controller for maintaining to the power flow control on a transmission line by injecting a voltage in quadrature with the line current and in series mode with the line. In this work, an Adaptive Network-based Fuzzy Inference System controller (ANFISC) has been proposed for controlling o...

متن کامل

Neuro-fuzzy Modelling and Control of Robot Manipulators for Trajectory Tracking

This paper presents a new neuro-fuzzy controller for robot manipulators. First, an inductive learning technique is applied to generate the required modelling rules from input/output measurements recorded in the off-line structure learning phase. Second, a fully differentiable fuzzy neural network is developed to construct the inverse dynamics part of the controller for the on-line parameter lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 1997